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The unusual low-temperature superconducting (SC) phase transitions following the competition between
orbital and spin electron pair breaking, characterizing clean, heavy fermion, strongly type-II superconductors at
high magnetic fields, are investigated within a nonperturbaive approach, which enables one to reliably deter-
mine the stable SC phases, treat properly the corresponding finite jumps of the order parameter, and account for

various unusual features reported recently for some heavy-fermion superconductors such as CeColns and

URUzSi2.
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I. INTRODUCTION

The phase transition from the superconducting (SC) state
to the normal state in strongly type-II superconductors is
usually dominated by the orbital (diamagnetic) pair-breaking
mechanism due to the characteristically small values of the
upper critical field H,, as compared to those of the Pauli
paramagnetic limiting field Hp.l In some heavy-fermion su-
perconductors, however, where the electronic effective
masses are sufficiently larger than the free-electron mass and
the cyclotron radii at the Fermi surface (FS) are relatively
small (see, e.g., Refs. 2 and 3), Pauli paramagnetic pair
breaking can dominate the diamagnetic pair-breaking mecha-
nism, and might generate exotic effects such as discontinu-
ous SC phase transitions,* and spatially modulated SC order
parameters along the magnetic field direction.®” A common
description of these remarkable phenomena usually exploits
a perturbative Ginzburg-Landau (GL) approach®'? to quali-
tatively account for the main features of the corresponding
phase diagrams.

Within such a perturbative approach it has been found
recently!® by employing a model of strongly type-II super-
conductor with a Fulde-Ferrel (FF) modulation of the SC
order parameter® that in the clean limit the nature of the SC
phase transitions depends on the dimensionality of the under-
lying electronic band structure. For a layered system with the
magnetic field direction perpendicular to the layers, a
changeover to first-order phase transition can take place in
the quasi-two-dimensional (quasi-2D) regime below a criti-
cal value of a three-dimensional (3D)-2D crossover param-
eter. In the 3D limit the normal-to-SC phase transitions are of
second order, with the SC phase spatially modulated along
the field direction. However, a second transition line from the
nonuniform to a uniform SC phase was predicted to be of
first order and very close to the normal-to-SC transition line.

The predicted situation for quasi-2D systems below the
critical value of the dimensionality parameter, outlined
above, seems to account for the changeover of the second-
order SC phase transition to a first-order transition, observed
recently in specific heat,'* NMR,'> and magnetization'® mea-
surements performed on the heavy-fermion compound
CeColns.

Above the critical value of the dimensionality parameter
the theory may be applied to the heavy-fermion supercon-
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ductor URu,Si, (whose Fermi surface may be characterized
approximately as spherical®). In this material a sharp rise of
the thermal conductivity with the decreasing magnetic field
just below H,, at low temperatures was reported very
recently,!” indicating the existence of a jump in its electronic
entropy associated with a first-order phase transition. The
theoretically predicted narrow-field interval between the two
consecutive phase transitions'® may account for the observed
(smeared) single steplike structure.

In attempting to account for these observations quantita-
tively a nonperturbative approach with respect to the SC or-
der parameter should be taken since at the discontinuous
transitions the order parameter jumps abruptly to finite val-
ues. Moreover, as we shall show below, the perturbation
theory fails qualitatively in predicting existence of a modu-
lated SC (FF) phase for quasi-2D superconductors.

Thus, we present in this paper a nonperturbative approach
to the paramagnetically limited SC phase transitions within
the Gorkov’s Green’s function formalism for a strong mag-
netic field and low temperature in the lowest Landau-level
(LLL) approximation of the Cooper-pair condensate. For the
sake of simplicity we will consider only an s wave, singlet
superconductor, and do not develop further the calculation
based on d-wave electron pairing presented in Ref. 13. This
can be justified in spite of the fact that some of the prominent
materials exhibiting strong paramagnetic limiting behavior,
such as CeColns, are believed to be unconventional (e.g.,
d-wave) superconductors, which in the presence of nonmag-
netic impurities, show qualitatively different (7,H) phase
diagrams from those characterizing conventional (s-wave)
superconductors.9 However, in the ultraclean limit of interest
in the present paper, it was shown in Ref. 13 that the inter-
play between spin and orbital pair breaking is nearly inde-
pendent of the type of the electron pairing.

The rest of the paper is organized as follows. The formu-
lation of the physical models under study within the Gork-
ov’s thermodynamic potential scheme is presented in the
next section. Critical failures of the common perturbative GL
approaches and their corrections by the nonperturbative ap-
proach are discussed. Applications to the calculations of the
true phase diagrams derived within the nonperturbative
theory are presented in Sec. III. In Sec. IV we compare our
results with experimental data and discuss their broader im-
plications.

©2009 The American Physical Society
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II. THERMODYNAMIC POTENTIAL

A. Gorkov’s perturbation expansion in
the SC order parameter

We consider two models of electronic systems which un-
dergo phase transitions to strongly type II, paramagnetically
limited superconductivity, under high magnetic fields at low
temperatures with a simple zero-field energy dispersion: (1)

(D) _ 12K | 7k

an isotropic 3D system with &.'=7"+7F, mo=m,
"z 1 z ’
where k=Xk,+yk, and (2) a quasi-2D system with sﬂqu)

#2lk|?

=7, o ttl1-cos(k.c)], where 7_ is the interlayer transfer in-
1

tegral and c is the interlayer distance. The external magnetic
field, H=Hz, is perpendicular to the easy conducting
(xy)-plane in the quasi-2D model where the energy spectrum
experiences Landau quantization. The first model may be
relevant for the SC phase transitions in URu,Si,, while the

r211({r} AO) 8 (1'1,1'2)8(1’2»1'3)

and

Ky, (r}) = kT2, Gy (11,10, 0,) Gy (12,13,,) ...

Here A2=V~'[d’r|A(r)|> is the spatially averaged
squared order parameter, and {r}={r,,...,r,,} denotes the
entire set of position vectors for a cluster consisting of n
electron pairs. Note that for convenience we incorporated the
gauge factors, g(r;,r,;), of the Green’s functions,
Gy, (r;,r;11,0,), for a free electron in a uniform magnetic
field, into the vertex part, I',,, so that the effective kernel K,,
is given in Eq. (3) by a product of the gauge invariant
Green’s functions, éOT ((r;, 10, 0,). A useful expression for
such a Green’s function for a positive Matsubara frequency,
v=0, can be written as (see Appendix A)

+ f dk, ka2 =P/
2mayho.) 2T

o0
Xf dTe[7‘[nF+g—sz(kz)/th+imV]

0
2 it
Pi2¢
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where p;,=r, ,-r,, with r )| and r, the projections of
the initial and final electron position vectors, respectively, on
the (x-y) plane perpendicular to the magnetic field. This
expression is obtained after summation over the LL index
n=0,1,... of the single electron energy, sl}kz/ hw.=n
+e.(k,)/ hw.+ g—np+iw, for a spin up (or down), with the
in-plane cyclotron frequency w.=eH/m’, c, Zeeman spin en-
ergy TeH/myc, and g factor g=m’", /mg, with m’,, my—the
in-plane effective mass and the free-electron mass, respec-

l’GOTl(rl,rz, COV) =

x(1- e‘”)‘lexp<—

r2n 1> an)g(an’ l'I)A(rl A*(l‘z)
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second model can be applied to the SC transitions in
CeColns.

We start the formal part of the paper by writing an expan-
sion of the grand thermodynamic potential (TP), (), in the
SC order parameter, A(r), using BCS theory for the usual
singlet s-wave electron pairing, as presented recently in Ref.
13. Thus we write

A2 (_ l)n
QA)=V—T—+> 0,,(A),
(hwc) ginz‘ n=1 n

M, = f T, ({r} A0 Ko, (), (1)

where g;,; is the effective BCS coupling constant, V is the
volume

- A(r,-1)A(ry,) (2)

Ggi(an—l’anvwV)GOT(an’rl’wv)' (3)

tively. Here np=u/hw,—1/2, u—the Fermi energy, and
w, =0,/ 0, with o,=Q2v+1)7kgT/#, the Matsubara fre-
quency. Space coordlnates and momenta are expressed in
units of ay and aH , respectively, where ay=vch/eH is the
magnetic length The electronic energy along the field direc-

tion, 8(3D)—2_ for the isotropic 3D case and 8(‘12D =r[1

—cos(k.c)] for the quasi-2D one, is denoted by & (k ). In the
former case the integral over k, is performed in the entire
free-electron range: —00<kz<00, whereas in the latter it is
carried out within the first Brillouin zone (BZ): -7 <k, <*.

For the sake of simplicity, we consider only a single-mode
(FF) modulation of the order parameter.® Multimode modu-
lation such as in the Larkin-Ovchinnikov (LO) state,” which
may be important at low temperatures,”!? is not expected to
drastically change our main conclusions (see a discussion
below). Thus, the SC order parameter is assumed to take the
form, A(r,z)=A,e“@y(x,y), where A2 = (2”)”2A2, and
@o(x,y) describes (in the symmetric gauge) a rectangular
vortex lattice with intervortex distance, a,

‘Po(x’)’) — eixyE eiqu—(y - q,\,/2)2 — e—l/2|u|2+l/2u22 eiqkz—q2/4

k k
while ¢ is a FF modulation function along the magnetic
field direction, controlled by the wave number, ¢. Here g,
=2mk/a,, and u=x+iy is a complex coordinate in the plane
perpendicular to magnetic field. Note that the exact form of
the vortex lattice is irrelevant in the present problem.
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B. The vertex part in the local approximation

The vertex part I'5,({r},Ap), Eq. (2), is a violently oscil-
lating function of the lateral relative electronic coordinates
Pi.i+1 =T 1~ i=1 ,2, . ,21’1, r 2,+1=r 1, which inter-
feres strongly with the oscillatory electronic kernel K,,({r}),
Eq. (3). Multiple integration over these coordinates yields
gross cancellations except near stationary configurations,
which restrict all 2n electronic position vectors to a relative
proximity region of size of a magnetic length.'®!° Other con-

)

_A2n 123 u 2+1/2u+u + - +l,42 +u2 Ay
FZn({r}sAmax) - Amaxe ll ll ( 2 n-1 2n)2ﬂ_

[m 2
_ AT A2n iq(z1~2p- . .~23,)

27 \2n

in which all off-diagonal terms involving different Landau
orbitals are neglected. Here an ad hoc notation for the spatial
coordinates, u;=x;+1iy;, has been used. This additional sim-
plification is justified since the off-diagonal terms, which are
sensitive to the vortex lattice structure, are proportional to
the small Gaussian factors, exp[— (172/a )EJ ,_l(kzj—ky D21,
with the orbital quantum numbers k; (j=1,...,2n) obeying
the conservation law: 22”1( 1)/k;=0. This property is closely
related to the weak dependence 0f the SC condensation en-
ergy on the vortex lattice structure.'®?° Consequently, the
remaining sum of the dominant diagonal terms is approxi-
mated in Eq. (5) by an integral (over g,). The great advan-
tage of using Eq. (5) in Eq. (1) is in its factorization with
respect to the relative coordinate and its apparent indepen-
dence of the center-of-mass coordinate, which enable us
rewriting the integrand in Eq. (1) as a separable
product of “new” single electron Green’s functions,

2 A~
—1/4p; . 2
e pl'HlGOTl(pi,Hl s (1),,).

C. Summation of the perturbation series

The corresponding nth order term, (),,, can be thus writ-
ten as a 3D integral over the center of mass momentum of an
effective two-particle Green’s function, raised to the nth
power, by performing an appropriate Fourier transformation
(see Appendix B), that is

kBT a,

QZn(Amax) V—- A;naxIZn’ (6)
H N
g Amax
where A, =7, and
dzkdk .
= -g—-q)"+cc.,
>0
(7)
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tributions to this integral, arising from nonstationary, sepa-
rately paired configurations, such as: r | ;=r ,, r 3=r 4 and
F | |=F .4, I 3=F 5, in the case of the quartic term (n=2),
become increasingly important with the increasing order, n,
of the expansion. However, since the self-consistent (mean-
field) value of the order parameter is restricted to relatively
small values, nonlocal contributions to the nonoscillatory
component'®!? of the TP may be neglected to any significant
order in the expansion, and the vertex part may be written in
the simple form

2 . ] ] .
f que_an/Zqu(ul_u;' . .—u;’l)etq(zl—zz. .=22,)

e—1/42pzi+]’ (5)

dre~ @i (8.0)1-120-im- MK

ek, —q/2)

k =Xk, + yk,.
ho x+ Yy

(8)

Note that in these expressions and in what follows a tilde
above a symbol indicates that it is calculated with energy
measured in units of fiw,.. The resulting perturbation series
can be easily summed to all orders, provided the reduction
prefactor é arising from the overlap integral of n LLL or-
bitals in Eq. (5), is represented as a Gaussian integral:
é Joexp(-nu?)du, with the result

_ 1
b (8.9) = S [K[*+ -g-np

c

0 a | A kT 5 &k
1%

\"’ET 8int a;—] >0 (277)3
XIn(1+eA2 0,)) |, )
71— 8,— Q) s (10)

where (f(u)),= é Joduf(u). Note the prefactor a,/ 27
(=0.76 for the hexagonal lattice) in Eq. (9), which takes into
account the reduction in the SC free energy associated with
the vortex core regions, and the maximal value of the SC
order parameter, Emax, in the vortex lattice unit cell.

The self-consistency equation for the order parameter ob-

tained from the variational condition A% —~ pie) x( )=0,

written as
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A? _ksT [ _d% A2, 6,
“max _ B 5 2 max - ) (11)
8int (277) >0 e A2

max u

A simple limiting situation for testing this nonperturbative
result in the zero magnetic field limit was solved exactly
long time ago by Gorkov (see, e.g., Ref. 21). For H—0 the

integrand in Eq. (8) (~e~V/2(1=im¢ Ik

, with |k| measured in
aH' units) is negligible except for very small 7 values, for
which 3(1-iT—e ")|k[>— ; Pk|*< 7w, so that the integral
over 7 yields the free-electron Green’s function: . The
resulting expression on the RHS of Eq. (11) is sumlar to that
obtained in Ref. 21 at zero magnetic field, except for the
averaging over u, which takes into account the constraint
imposed on the electrons to be in the LLL in our high-field
approach.

Another limiting case is the quasiclassical limit ( P >1

ZZSBT = 1) of a BCS superconductor in a magnetic ﬁeld with

a uniform (g=0) SC order parameter along the field direc-
tion, without spin splitting (g=0). Here the dominant contri-
bution to the effective two-particle Green’s function, Eq. (8),
originates in the integration region 7<<1 so that /" can be
expanded up to second order to yield the Gaussian approxi-
mation

~ f dTe—T[my‘”é:k,kr(qu)]—1/472‘1('2’ (12)
0

in which quantum magnetic oscillations and other quantum
corrections are neglected. Expansion of the RHS of Eq. (11)

up to first order in e Amdxﬁ)v yields the well-known

Helfand-Werthamer self-consistency equation for H,,(T).?

D. Rescaled expression for the thermodynamic potential

In what follows it will be convenient to employ field-
independent normalization for the order parameter and re-
lated quantities by changing the energy scale Ziw, to 7kgT .
with T,y the transition temperature at zero magnetic field,

—— The
2m’ wkpT o
latter length is related to the in-plane BCS coherence length,
ﬁ * *
£0)=""" | where vp=Fkg/m" and ky=\2m" u/h2, via
é= ;’2;‘0) £0).
In terms of the rescaled parameters Eq. (9) takes the form

and the corresponding length scale ay to €=

O 2m)’t &’k

all’[tAﬁ]aX — Rez _3
VE, m™E >0 (2m)

XIn(1+ A2 e —“2@V)> : (13)

where t=T/T,, and
2
|- g- q)’ E?nax &
(k5T 0)

Note that in these expressions and in what follows a bar
above a symbol indicates that it is calculated with energy
measured in units of wkpT.,. Since we use T,y as an input
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parameter, the coupling constant, «;,, is determined here
from the self-consistency Eq. (11) at A,,,=0 and H=0, i.e.,

(277)22 f &’k 1
ain = — —12
T ommiso) CmPrs 12+ [+ 5.(k) - @l

Exploiting the quasiclassical (Gaussian) approximation,

Eq. (12), the effective Green’s function, ®,, can be reduced
to

o]

q_)v(k’kzlg,q) = f dTe_T[t(ZIH'l)+igk’kz(g’q)]_bk272/2n2ﬁ
0

wi(x
- ( V) — , (14)
(2V + 1)t + ifk,k,
— Qv 1)e+iE ]
where w(x)=1 ﬂ'xe"zErfc(x), with x,= 7]# and the

renormalized single electron energy: Ekk (g,9)=k*+&.(k,

-q/2)-gb- ,L_L, b=-— The renormalized parameters are de-

H
fined _ —_  hog  _ de = vkgTeott
ned as /.L' WkBTo 8= g,TkBTw, SZ_WkBT(-o’ an ﬂ—to_\ﬂ 278
The quantity
7TkBTCO
Vi@ pop

with w.g=eH o/ m’, c, is a constant of the order unity relat-
ing the transition temperature at zero field, 7, to the upper
critical field, H ., at zero temperature for g=0 and ¢=0. For
the BCS-like theory employed here this constant defines a
single scaling function determining the entire H-T phase
boundary in the absence of the Pauli paramagnetic effect. Its
numerical value depends on the material electronic band
structure, e.g., on the interlayer tunneling integral 7, in the
present model (see below) and on the type of electron pair-
ing.

E. Diamagnetic versus Pauli paramagnetic effect

Equation (14) provides us with a simple expression for
the diamagnetic effect on the single-electron propagator in-
volved in paramagnetically limited pairing. It consists of the
usual Green’s function in momentum space for an electron in
the presence the Zeeman (paramagnetic) spin splitting and a
correction factor, due to the orbital (diamagnetic) effect, ex-
pressed by the function w(x,). The latter function varies be-
tween the asymptotic value w(x,)— 1 at large |x,|, which
reflects the limit of no dlamagnetlc effect (e.g., for b<<1),

and the limiting value wi(x )—>\7Tx 06(2v+1)t+1§kk at
, which strongly modifies the Green’s function due
to diamagnetic effects (see Fig. 1). The strong variation in
the complex function w(x) around the origin, shown in Fig.
1, reflects the restriction of the diamagnetic effects appearing
at high fields and low temperatures to electrons with energies
close to the Fermi energy.

To gain further insight into the structure of Eq. (13) let us
consider the two-particle distribution function, D(|k|)
——|k|Re Jdk.®,_¢(k,k,), in momentum space perpendicu-
lar to the magnetic field (see Fig. 2). The sharp peak at |K|
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FIG. 1. (Color online) The modulus of w(x,) in the complex x,
plane. Note that |w(x,)| deviates significantly from unity only
around the origin where |x,|=<1.

~kr, shown in Fig. 2, for a system without spin splitting,
g=0, reflects an enhancement of the contribution to the SC
condensation energy from electrons around the extremal
Landau orbit, n ~np=pu, k,~0. However, the overall contri-
bution to pairing from electrons away from this region, n
<ng, k,~kp=\f, is still significant. Strong spin splitting,
e.g., at g=3, reduces the pairing energy for the uniform state
q=0 in the entire electron spectrum, leading to a stronger
localization around the extremal Landau orbit. For electron
pairs with nonzero small ¢ this localization effect is signifi-
cantly weakened but recovered for larger ¢ (see Fig. 2).
The quasiclassical expression for the Green’s function,
Eq. (14), has been used in the numerical calculations pre-

FIG. 2. (Color online) The pair-distribution function D(|k|), at
t=0.1 and »=0.2, for an isotropic 3D metal with g=0 (two upper
curves) and g=3 (three lower curves) for different modulation wave
numbers along the z axis: ¢g=0 (solid), ¢=0.1 (dashed), and ¢
=0.3 (dotted). The upper (blue) dotted line represents the RT ap-
proximation for g=0.

PHYSICAL REVIEW B 80, 174520 (2009)

sented in the next sections. However, for illustrating the main
qualitative features of the diamagnetic effect, it is instructive
to use an approximate simple expression for the function
®,(k,k,|g,q) by exploiting a “relaxation time” (RT) ap-

L . 22, 2o
proximation, e~"™(¥) for the Gaussian factor, ¢~%% P17 E,
appearing in Eq. (12), with a relaxation time 7,(|k]|)
= Z—b’%. The corresponding effective single-particle Green’s
function, Eq. (12), takes a familiar form

1
Qv+ D+ 75" (K]) + i (8.9)
(16)

v 2™z

8.q9) =

with 7' (|k|) ~ b"|k| determining a rate of diamagnetic “pair
relaxation” in addition to the usual rate of thermal pair
breaking. Equation (16) explicitly shows that the diamag-
netic effect is important for quasiparticles with sufficiently
large momentum components in the plane perpendicular to
the magnetic field, satisfying b'?|k| = k.

The reliability of this approximation can be examined by
comparing the numerically calculated distribution function,
D(|k|) with that obtained in the RT approximation (see Fig.
2), which can be readily evaluated analytically for a 3D sys-
tem. For a nonzero spin splitting D™(|k|) has a form simi-
lar to D(k|) at the same spin-splitting parameter, so that
most of the results obtained within the RT approximation are
qualitatively correct. Nevertheless, some important fine fea-
tures, such as the dependence of the phase diagram on di-
mensionality, may not be correctly described in this simpli-
fied framework.

F. Failures of the low-order perturbation theory

In this section we reveal critical failures of the perturba-
tion GL theory used in the existing literature, which entail
development of the nonperturbative theory presented in this
paper. This is done by expanding the expression for Q(&fnax),
Eq. (13), in power series of AZ_, i.e.,

= X2 1% 1 <6
Ql’ert/v':o = a/Amax + EIBAmaX + gyAmax + 0, (17)
and comparing to the nonperturbative result. Thus, up to the

second order in A% we find that

max’

(2m)°t 5 &Ik

= — Re O, 18
(63 Xjpy fn‘VE = (277_)3 € v ( )
1 (2w)2tzf d’k [(Re 8.~ (Im ©)7]
=112 ¢cY,) —-umo,) |,
21/2 77\”/_/1 = (2,”.)3

(19)

which imply that the “ill” behavior of ®, in the presence of
strong spin splitting, namely, that Re ®,<0 and Im 0 ,+#0,
can lead under certain circumstances, within the low-order
GL expansion, to a changeover to first-order SC phase tran-
sition. Indeed, Eq. (18) shows that Re ®,<<0 can prevent the
critical behavior of a by reversing the sign of the second
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FIG. 3. (Color online) Dependence of the GL coefficients a (red
line), B (blue line), and 7y (green line) on the modulation wave
number ¢ for an isotropic 3D system with g=1.8, at t=0.2 and b
=0.185. Note the optimal g=¢,,,=.1, corresponding to a minimal
value of a, where 3 is positive, resulting in a second-order phase
transition from the normal to a nonuniform SC state within low-
order perturbation theory.

term on its RHS, whereas from Eq. (19) one concludes that
[Im ©,|>|Re ©,| can lead to B<0 (see Fig. 3). For a strong
spin splitting such anomalous behavior of the coefficient 3
occurs at the second-order “transition” line, a=0, below
some critical temperature 7. One might expect that the next-
order term, with the coefficient y(¢=0) being usually posi-
tive (see Fig. 3), fixes the second-order perturbation theory
and provides a correct result. Under these circumstances the
third-order perturbative GL free energy, Eq. (17), yields a

first-order SC phase transition at QA2 )=0 with A2

=%ﬂ and a=%§—2>0. However, due to very small values of
v(g=0), the position of the energy minimum is shifted to a

large value of A2 (A% =~0.23), where the perturbation
theory is not valid. A lower bound on the radius of conver-

gence for both second- and third-order theories can be esti-
mated as A’

max = 0.02.

The application of the perturbation theory to the nonuni-
form states is even more troublesome since the expansion
coefficients oscillate with the modulation wave number ¢
(see Fig. 3). Near the optimal FF wave number g=g,,, (e.g.,
~0.1 in Fig. 3), where the second-order perturbation theory
(in contrast to the third-order theory) correctly describes the
continuous phase transition to the nonuniform (FF) SC state,
this oscillatory dependence provides the means for healing
the anomalous behavior of the coefficients arising from the
strong spin splitting (see, e.g., the anomalous behavior in
Fig. 3 near ¢=0 and its healing near g=g,,,). The reliability
of the second-order theory quickly deteriorates away from
Gops» €-&.» in approaching the region ¢~ 0.06-0.08 in Fig. 3,
where both coefficients 8 and y change sign.

The trouble with the standard GL theory of the modulated
state is illustrated in Fig. 4 where the minimized TP with

respect to A;ax, obtained from the nonperturbative approach
and from the second-order perturbation expansion, is shown
as functions of the modulation parameter g. The curve, rep-

resenting the nonperturbative theory near a first-order transi-
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0.00 002 004 006 008 010 012

FIG. 4. (Color online) Comparison of the SC free energy, at ¢
=0.2 and »=0.185, obtained from the nonperturbative approach for
an isotropic 3D system as a function of ¢ (solid curve) with the
corresponding second-order perturbative result, —% (dashed curve).
The perturbation theory correctly indicates the very existence of a
first-order phase transition but fails badly to describe it quantita-
tively. The material parameters used, u=10, g=1.8, are character-
istic of URu,Si,.

tion, has a clear double-well structure corresponding to the
uniform and nonuniform SC states. The curve representing
the second-order theory shows a divergent free energy at a
critical ¢, where B(¢”)=0 (see Fig. 3). The removal of this
singularity in the third-order theory, due to the positive value
of yat qf, is not very helpful since the latter theory becomes
also unreliable in slightly varying g due to the nearby critical
point ¢, where y(¢))=0.

III. APPLICATIONS OF THE NONPERTURBATIVE
THEORY: PHASE DIAGRAMS

The analysis presented in the preceding section shows that
one may not trust the perturbative GL approach even for
qualitative purposes, such as schematic determination of the
H-T phase diagram, needless to say for quantitative applica-
tions. In the present section we apply the nonperturbative
method developed in Sec. II in determining the phase dia-
grams for the two electronic models outlined there.

Quantitatively speaking, the most significant effect of the
paramagnetic pair breaking on the phase diagram at low tem-
perature 7 is its dramatic (i.e., by nearlgl an order of magni-
tude in typical cases) suppression of Cg)(T) as compared to
the upper critical field determined solely by the diamagnetic
pair breaking. In addition to this effect, which can be esti-
mated within the perturbative GL approach by the usual con-
dition for a second-order phase transition into a uniform SC
state, a(g=0)=0, there are (much weaker) enhancement
mechanisms of H,,(T), which are operative at different tem-
peratures. At temperatures 7 below T, where the curvature

i . . .
K=§a’(q=0) along the line a(¢=0)=0 is negative, one ex-
pects (within perturbation theory) a second-order phase tran-
sition into a modulated state at Hg), with an optimal value
q=4,p, satisfying a(q=gq,,,,)=0. Thus, for the corresponding
uniform state one has: a(g=0) >0 (see Fig. 3), implying that
H%>HY). At temperatures T below T*, where B(g=0) is
negative along the line a(g=0)=0, one expects (again within
perturbation theory) a first-order phase transition into a uni-
form SC state for another positive a(¢=0) value (given, e.g.,
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FIG. 5. (Color online)  vs A, (in units of Z,V) for a uniform
(g=0) SC order parameter (solid curves) and for the corresponding
FF modulated order parameter (dashed curves) at various magnetic
field values b near the SC transition of an isotropic 3D system at
temperature =0.02. The selected material parameters are the same
as in Fig. 4. Note the first-order transition from the FF to the uni-
form SC state at b=0.185.

within third-order perturbation theory, by a=%€—;>0) at a
critical field H'Y)>H').

The correct value of HE,IZ) can be determined, however
(except for T<Ty,), only by the nonperturbative theory

since at the first-order transition A2 jumps to a relatively
large value (=0.04). The relative magnitude of T, and T,
as well as of ngz) and HE,12>, depends on the dimensionality of
the FS and will be considered separately for an isotropic 3D

and quasi-2D systems in the following sections.

A. Isotropic 3D system

For a clean isotropic 3D system one has: Ty, >T", ngz)
>H£.12), and within perturbation theory (see Ref. 13) T
=Tp, is a tricritical point at the edge of an intermediate
nonuniform SC phase, which is separated from the normal
state by a second-order transition line and from the uniform
(BCS) state by a first-order transition line (see Fig. 6). Just
below Typ,, where the order parameters for both transition

lines are sufficiently small, the corresponding mean-field
value, Q,.(q) ~—%, of the GL TP, Q,,,/ VE():aKﬁm
+ % BA? . has a double-well structure with two local minima
at g=q,,, and 0. The former minimum has a lower energy at
high field whereas the latter becomes energetically favorable
at lower field, predicting a weak first-order phase transition
from the modulated to the uniform state just below Hg),
since ,;,(¢=0) changes much faster with the magnetic field
than Qmin(q=‘hpt)-

At T<T", because of the strong variation in B(¢g) around
zero (see Fig. 3), the perturbation theory is unstable and the
two SC phases can be properly described only within the

nonperturbative approach. Thus, considering Eq. (13) for the
TP, the general form of (M(AZ

. 2 .
cax) as a function of Ay is

PHYSICAL REVIEW B 80, 174520 (2009)
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FIG. 6. (Color online) A quantitative bz-phase diagram for an
isotropic 3D heavy-fermion metal (material parameters are the same
as in Fig. 4, characterizing URu,Si,). The thin (orange) solid line
separates the normal and SC phases at second-order phase transi-
tions. Below Ty, the transitions are to a modulated SC state
whereas above Ty, the transitions are to a uniform state. The thick
(green) solid line corresponds to the first-order phase transition be-
tween FF (shaded area) and uniform SC states. The (blue) dashed
line is obtained from the usual equation a(z,h)=0. The parallel
straight (orange) dashed lines, originating from the points 7'y, and
T*, are determined by the equations «(z,b)=0 and pB(z,b)=0,
respectively.

controlled by the argument Elznaxe"‘z@w which is always real

and positive in the absence of spin splitting, but can become
complex for the uniform (¢g=0) state at large spin splitting g.
Under these circumstances it is easy to show that () has a

maximum at small Kfnax which is followed by a minimum at

larger A2 (see the solid lines in Fig. 5). Physically, the

initial maximum reflects the competition between the in-
creasing spin paramagnetic energy and decreasing SC pair-
correlation energy as the number of spin-singlet Cooper pairs
is increased. This anomalous feature is “healed” by introduc-
ing an FF modulation wave number g # 0, which restores the
usual single minimum structure (shown by the dashed lines
in Fig. 5). At high fields the usual single minimum at small

A2 for the modulated state (with ¢ # 0) corresponds to the
equilibrium state.

However, due to its compensation effect, the FF modula-
tion strongly reduces the scale of the SC free energy with
respect to its uniform counterpart (compare the dashed
curves to the corresponding solid ones in Fig. 5), so that by
slightly reducing the field below the second-order normal-
to-SC transition, the g=0 state becomes energetically more
favorable and the system transforms from the nonuniform to
a uniform SC state via a first-order phase transition.

The calculated mean-field phase diagram is shown in Fig.
6. The differences between the results predicted by the per-
turbative and nonperturbative approaches are remarkable. In
particular, the line determined from the condition k=0, in-
terpreted commonly as an internal SC phase boundary be-
tween the modulated (FF) and the uniform SC states, devi-
ates qualitatively from the actual phase transitions line
obtained in the present nonperturbative method. The result-
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FIG. 7. A plot of 1-Tjg,/T" as a function of the dimensionality
parameter 27,/ u, showing the crossover from a three-phase diagram
(shown, e.g., in Fig. 6) in the 3D limit (2¢,/u>1) to a two-phase
diagram (shown, e.g., in Fig. 8) in the quasi-2D limit (27,/ u<<1).

ing modulated SC phase is restricted to a very narrow strip
below the (second-order) phase transition line to the SC
state, which might be difficult to resolve experimentally.

B. Quasi 2D systems

As indicated in the introduction, the perturbative calcula-
tions employed in Ref. 13 predict that the dimensionality
characterizing the Fermi surface of the various materials un-
der study plays a crucial role in the fine balance between the
tendency of the system toward a uniform SC state via a dis-
continuous phase transition or toward a modulated (FFLO)
phase. The situation can be illustrated by plotting the ratio of
Tip, to T as a function of the dimensionality parameter,
2t./ ., which is the maximal electron energy, Sg(}?lz,:mc’ per-
pendicular to the easy conducting plane, measured relative to
the Fermi energy (see Fig. 7). Consistently with our previous
result, based on a different quasi-2D model,'? it is found here
that T, is suppressed more strongly than T* by decreasing
2t,/ u toward the 2D limit, so that below some critical value
of 21,/ u(=1.4) there is a changeover to first-order SC phase
transitions. We have found that this critical value increases
with increasing Fermi energy when all other parameters, ex-
cept for ¢, remain fixed.

The sharp feature seen in Fig. 7 at t,=u/2, i.e., where the
FS touches the BZ boundary perpendicular to the z axis,
arises from the sharp minimum characterizing the scaling
factor 7(t,) at r,=u/2 [see Eq. (15)]. The origin of this mini-
mum is in the sharp maximum of H.,(z,) at t,=u/2 for
which the condition Ek,,gzo in the denominator of the GF,
Eq. (14), at =0 corresponds to a sharp resonance, where
open channels with small cyclotron energy [i.e., with k—0
and large k,(=m/c)] near the FS suppress the diamagnetic
effect [i.e., causing w(x,) — 1].

Considering the quasi-2D region 2¢./u<<1, where T*
> Typ,» the question arises as to whether a modulated (FF)
phase can be stabiliazed above the nominal transition line,
determined by K:;—q}a(q:O):O (dotted line in Fig. 8), as
proposed by several authors,'*!3 following predictions based

PHYSICAL REVIEW B 80, 174520 (2009)
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0.0 0.1 0.2 03 0.4 05
FIG. 8. (Color online) bt-phase diagram for a quasi-2D heavy-
fermion metal. Notations are the same as in Fig. 7. The material
parameters used, #,=1.8, g=1.5, u=30, are characteristic of
CeColns.

on perturbative approach.’!! The failures of the perturbative
approaches, discussed in the previous section, entails a care-
ful re-examination of this prediction within the framework of
the present nonperturbative approach. Thus, investigating the
TP given by Eq. (13) in the quasi-2D regime in a manner
similar to that done for the isotropic 3D case presented in
Fig. 5, it is found that the uniform SC phase, created discon-
tinuously at the first-order transition line below 7%, remains
stable with respect to formation of a modulated FF state in
the entire phase-diagram region below 7" (see Fig. 8).

This finding is in accord with the very narrow region,
found in the phase diagram shown in Fig. 6, for a modulated
(FF) state in the most favorable situation of an isotropic 3D
superconductor. In the present, unfavorable case, of a
quasi-2D system the competition between the already stable

minimum of the TP for the uniform SC state at finite A2

max

and the metastable minimum for the modulated state at small
A% under decreasing field (or temperature) below the first-

max
order transition line (thick solid line in Fig. 8) is a lost battle
for the modulated state due to its smaller scale of SC con-
densation energy. Similar conclusion is expected to hold also
for a multimode modulation, such as in the LO (Ref. 7) state,
since the price paid in terms of electron-pair kinetic energy
for the creation of any modulated state (FF or LO) with the
same wave number ¢ is the same. Consequently, the corre-
sponding change in the SC condensation energy (arising
from compensation of the Zeeman spin-splitting energy) can-
not be drastically different for the different modulated states,
so that the tendency of the system to stabilize in any modu-
lated state cannot compete with its much stronger tendency
to transform into a uniform state via a first-order transition.

IV. DISCUSSION AND COMPARISON
WITH EXPERIMENT

Among the many candidate materials proposed over the
years for observing strong paramagnetic effects on their
SC phase transitions, the heavy-fermion superconductor
CeColns is the most extensively studied. It has a layered
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FIG. 9. Temperature dependence of the jump, A jump» Of the order
parameter at the first-order transition, showing rapid variation near
the changeover point 1=¢"=0.34. Parameters are the same as in Fig.
8.

crystal structure and moderate quasi-2D electronic band
structure,? which favors a changeover to first-order SC phase
transitions directly from the normal state. Such a changeover
has been reported in various experimental probes, including
specific-heat,'* magnetization,'® and NMR (Ref. 15) mea-
surements. The main features of the high-fields low-
temperatures corner of its phase diagram for a magnetic field
parallel to the ¢ axis (see, e.g., Refs. 14 and 15) is quantita-
tively accounted for by Fig. 8. The possibility of a modulated
FF or LO state, discussed extensively in these papers, is in-
consistent, however, with our finding. Our nonperturbative
calculations of the SC free energy show clearly that for a
quasi-2D system, where a first-order phase transition takes
place from the normal to a uniform SC phase, a modulated

PHYSICAL REVIEW B 80, 174520 (2009)

(FF) SC phase is energetically less favorable than the uni-
form phase. This conclusion seems to agree with very recent
neutron-scattering experiment,”? showing strong evidence for
a magnetic order as origin of the observed modulation in the
SC order parameter, rather than FF or LO modulation.

An important measurable quantity is the jump, A ump(1)
of the SC order parameter at the first-order transition, which
exhibits a typical temperature dependence as shown in Fig. 9
for parameters characterizing CeColns. The development of

the mean-field order parameter, A ,,,, with the magnetic field
at and below the SC transition for a given temperature is
determined by the minima of the calculated SC TP as a func-
tion of the order parameter for different magnetic field val-
ues, as shown in Fig. 10(a). At a field slightly above b,(z)
the TP develops a shallow, metastable minimum, which be-
comes degenerate with the normal-state minimum at the fi-

nite value of the order parameter, A, =A ump [~0.34 for ¢
=0.1, see Fig. 10(a)] determining b.,(r). Except for the high-

temperature region near the critical point r=r*, where A ump
sharply increases from zero (see Fig. 9), the mean-field value

A,.(b) increases weakly with the decreasing magnetic field
below b,,(f) up to a value, at zero field, which is approxi-

mately 2A jump [see Figs. 10(a) and 10(b)]. This behavior is
different from that characterizing the discontinuous phase
transition in a 3D system, discussed in Sec. III A, where the
order parameter jump is approximately twice smaller than its
variation below the first-order transition.

It should be noted that this mean-field picture is expected
to change significantly by thermal (or/and quantum) fluctua-
tions due to the very small activation barrier separating the
two degenerate minima at the first-order transition shown in
Fig. 10(a).

0.01 ——————————————
1 0.4 ————
b=.2187 ] I
0.00
03+ 1
-0.01 N
> t I~ |
o <&
= e 0.2 R
S| = L 1
S| i )
-0.02
0.1F H
~0.03
0'07 L L L L L L L L L L L L L L L L L L L L L L L :\
0 1 2 3 4 5
—-0.04 L T R I N SR R ol N e e ‘4 T I I (b) H (T)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
(@) A/r Teo

FIG. 10. (a) SC free energy as a function of order parameter for different field values below the first-order SC phase transition at

temperature r=0.1. Dashed line is the locus of minima determining the mean-field values, A, (b). Parameters are the same as in Fig. 8. (b)

2
max

Magnetic field dependence of A

(in the mean-field approximation), as determined from the TP shown in panel (a).
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Our nonperturbative approach can be applied to the calculation of magnetization near the first-order SC transition, and
compared with experimental data, reported, e.g., in Ref. 16. Using Eq. (13) the SC contribution to the magnetization is readily
calculated (since the explicit dependence on magnetic field originates only in the effective Green’s function), yielding

akBOR2 &’k

e AZ

max

¢4 _g’_CI)]

M a0 1
V. OHV Hg\2m € V>0

To compare with the experimental data we have added an
empirical normal-state contribution by extrapolating the ob-
served field-dependent magnetization above the transition to
the SC region. The result is shown in Fig. 11, together with
the experimental data. The good quantitative agreement is
particularly remarkable in light of the fact that no adjustable
parameter, other than the absolute scale of the magnetization,
has been assumed in the fitting.

Finally, de Haas—van Alphen (dHvA) oscillation has been
observed both in the normal and SC mixed states in
CeColns,?* showing a very sharp additional damping at the
SC transition for magnetic field direction perpendicular to
the easy conducting layers, which seems to be consistent
with the occurrence of a first-order SC phase transition.

Assigning the sharp rise, 67,=0.08 K, of the Dingle
temperature observed in the dHVA measurements®* to the
discontinuous jump, SA, of the SC order parameter at the
first-order transition, 67, may be calculated by exploiting
the random vortex lattice model19 with the formula

2 WRBL 0 TrkB c0 [—E
h (OF%) F

b}

oTp= 0_(5A)

where F is the relevant dHVA frequency. Using the experi-
mental values: g=14.8, F=5000 T, T,=2.3 K, and H,,

=4.8 T, and the calculated value of the jump 5520.34, we

0.0

Magnetization (ar.u.)

4.0 4.2 44 4.6 4.8 5.0
H (T)

FIG. 11. (Color online) Experimental (Ref. 16) (violet and blue
dotted lines for up and down sweeps, respectively) and theoretical
(solid red line) magnetization as functions of the magnetic field at
T=30 mK in CeColns. The normal-state contribution below H,
was obtained by a linear extrapolation of the measured magnetiza-
tion in the normal state (dashed line).

Q@m*y 4 e‘”zﬂﬁm

(20)

e‘”z(i_>,,(k, k.|g -q)

arrive at: 5]"(5“1)%0.12 K, which agrees rather well with the
experimental value of 67,=.08 K.

Similarly, using our nonperturbative approach, we have
shown in a separate communication? that the dHvA effect
observed in the mixed SC state of URu,Si, (Ref. 3) provides
a clear experimental evidence for the predicted double-stage
nature of the low-temperature high-field SC transition in 3D
superconductors, which is smeared by significant SC fluctua-
tions effect. This finding is basically consistent with the in-
terpretation of a first-order phase transition given in Ref. 17
to the single (smeared) steplike structure observed in the
thermal transport data of this material, which seems to hide
the continuous phase transition within the tail of the nearby
first-order transition. The double-stage structure can be re-
solved experimentally only by probes, such as the dHvVA
measurements reported in Ref. 3, sufficiently sensitive to the
variation in the order parameter in the narrow transition re-
gion.

We note that the unusual sign of the observed jump in the
thermal conductivity, which could be due to some peculiar
quasiparticle scattering mechanism,?® is irrelevant to our
main argument, which associates this jump, irrespective of
its direction, to the jump of the SC order parameter at the
predicted first-order transition.

V. CONCLUSION

In the present paper we have derived a nonperturbative
expression for the SC thermodynamic potential of a strongly
type-1I superconductor in the presence of strong Pauli para-
magnetic effect and have determined the corresponding H-T
phase diagrams for prototype 3D and quasi-2D heavy-
fermion compounds. It is found that for quasi-2D heavy-
fermion metals, such as CeColns, at high magnetic fields
oriented perpendicular to the highly conducting planes, the
effect of the Fulde-Ferrel (FF) (or Larkin-Ovchinnikov)
modulation is too weak to prevent a first-order phase transi-
tion from the normal to the uniform SC state. No modulated
FF phase can be, therefore, stabilized at fields below H,, in
this kind of materials. The calculated thermodynamic poten-
tial yields good quantitative agreement with the experimen-
tally derived phase diagram and measured low-temperature
magnetization near H,, in CeColns. For 3D heavy-fermion
metals, such as URu,Si,, the FF modulation stabilizes, under
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a decreasing magnetic field, a nonuniform SC state via a
second-order phase transition from the normal state. How-
ever, at a slightly lower field the modulated phase becomes
unstable, transforming to a uniform SC state via a first-order
transition. The sharp onset of the SC order parameter calcu-
lated for this double-stage scenario of the SC transition, in-
cluding fluctuation effect, is found to be in good agreement
with dHVA results in the SC state of URu,Si,.
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APPENDIX A

Starting from the standard expression

1 f dk,
7| e
2may) 2w
where L,(p?/2) is the Laguerre polynomial of the order n
and Enk, /hw.=n+§&_, one can make use of the integral repre-
sentation, *i[ny—n-&,+iw,] =[] dre*imnrn=s+iw] - and
apply the well- known identity, En:OZ L,(1)

=(1-z)” exp( 7) with z=e™'" and t=p*/2, for the summa-
tion over LLs, to obtain the expression given by Eq. (4).

—p2/4 2
ikz(z2_21)2 epL—n(p/Z)

Gon(fprz,wy) = L
n M= 8nkZ +iw,

APPENDIX B

For a positive Matsubara frequency the general term of
the order-parameter expansion can be written as

d’RdZ f [T dre= mrineS (= D'rrig (L7, ([7]),
0

1,07 = J I dklzdkz dpzll+l k0 =iE (- 1 723 - D+ (= Dk

&’k
(7)) = f W H d2Pl,z+1(1 - §1)_16XP<—

. !
e iV x?:ﬁzklz’z/Zmﬁwc and

1
= 221,
n

where &=

Pz i+1 = 2+1 — <s

1
—_2"/
n

are the relative and center of mass coordinates. We have also
used the identities: exp—in,(—l)lzlzei%El(—l)lpz‘,,,H and

H dz;=

Pris1 =T~ 1

ekZezum I dZdp, .1,

Hdzrlzf

Let us consider /,([7]). Performing first the integrations
over relative coordinates, p,;;,, one obtains the momentum
conservations laws which can be used for further integrations
over k_;. The resulting expression

2’ PN dszzp,, 1

2
. L2
M)etkz‘()uﬂ—lnzmﬂ’

2(1-¢)

dk . / I 72
I _ 2 -i/23(- Dk, + (- D'gi2]
q([T]) f(zﬂ_)ze

is factorized with respect to 7.
The integrals over relative coordinates in I,([ 7]) are of the
Gaussian type which are estimated as

2

i _ _ PLi1él

&2 oKPLL1p 12p] 14 1 — &) lex (_ _,_)
f Pri+1 ( &) p 21-¢&)

_ 2W€—1/2(1—§,)k2’

leading again to factorized representation

2
14[7) = @m" f e
an

Collecting all factors depending on 7; in (,, one arrives at
the desired formula, Eq. (6) for w,> 0. The contribution for
negative ¥<<0 can simply obtained by replacement 7,— —7;
which produce the complex conjugate expression to
an(w v > 0) .
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